Loop groups and discrete KdV equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loop Groups and Discrete KdV Equations

A study is presented of fully discretized lattice equations associated with the KdV hierarchy. Loop group methods give a systematic way of constructing discretizations of the equations in the hierarchy. The lattice KdV system of Nijhoff et al. arises from the lowest order discretization of the trivial, lowest order equation in the hierarchy, bt = bx. Two new discretizations are also given, the ...

متن کامل

ON LOOP EQUATIONS IN KdV EXACTLY SOLVABLE STRING THEORY

The non-perturbative behaviour of macroscopic loop amplitudes in the exactly solvable string theories based on the KdV hierarchies is considered. Loop equations are presented for the real non-perturbative solutions living on the spectral half-line, allowed by the most general string equation [P̃ , Q] = Q, where P̃ generates scale transformations. In general the end of the half-line (the ‘wall’) i...

متن کامل

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

On Discrete Painlevé Equations Associated with the Lattice Kdv Systems and the Painlevé Vi Equation

1 Abstract A new integrable nonautonomous nonlinear ordinary difference equation is presented which can be considered to be a discrete analogue of the Painlevé V equation. Its derivation is based on the similarity reduction on the two-dimensional lattice of integrable partial difference equations of KdV type. The new equation which is referred to as GDP (generalised discrete Painlevé equation) ...

متن کامل

Integrable Quartic Potentials and Coupled KdV Equations

We show a surprising connection between known integrable Hamiltonian systems with quartic potential and the stationary flows of some coupled KdV systems related to fourth order Lax operators. In particular, we present a connection between the Hirota-Satsuma coupled KdV system and (a generalisation of) the 1 : 6 : 1 integrable case quartic potential. A generalisation of the 1 : 6 : 8 case is sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2002

ISSN: 0951-7715

DOI: 10.1088/0951-7715/16/1/316